Distributed On-Chip Power Regulators and Decoupling Capacitors

Eby G. Friedman

Department of Electrical and Computer Engineering
University of Rochester
Department of Electrical Engineering
Technion – Institute of Technology
Delivering High Quality Power On-Chip
Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
- Heterogeneous power delivery management
- Future research
- Summary
Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
 - From power plant to integrated circuit
 - Power delivery architectures
- Heterogeneous power delivery management
- Future research
- Summary
Electricity – From Power Plant to House

Power plant

Step-up transformer

Transmission lines

Step-down transformer

155 kV – 765 kV direct current (DC) or AC

<10 kV

Local distribution lines

155 kV – 765 kV

120 V alternating current (AC)

120 V
Electricity – From House to Computer Board

Intel Skulltrail motherboard – D5400XS - 2009
Electricity – From Board to Integrated Circuit
Toshiba HD decoding chip – 2011

25 power domains

(2)-(11) Video/Audio multiprocessor
(17) Full-HD video
 H.264 Codec engine
(19) 3D/2D graphics engine
(20)-(22) ARM processor
(15) Camera I/F
(14) Display I/F
(16) Image composition
(12) JPEG/Video scaling
(1)(13)(18)(23) Main bus
(24) Control bus /
 Peripheral I/F
(25) I/O

(a) SCS-DRAM I/F
Electricity – From Board to Integrated Circuit
Samsung Exynos 4 Quad Core – 2012

- Quad core application processor
 - 32 nm
 - High-k metal gate
 - Over 1.4 GHz per core

- Separate power management IC
 - Nine buck converters
 - 28 LDOs

- Dynamic voltage and frequency scaling (DVFS)
 - 6.25 mV step size
Power Management – Adaptive Power Supply

- Centralized power management controller
- Hybrid power supply
 - Buck converter and switched capacitor regulators
- Suffers from low power efficiency
 - 41% to 93%
 - Switched capacitor regulator

Dynamic Voltage Scaling (DVS)

- On-chip power management area
 - 0.36 mm²
- Centralized control
 - Far from the load
 - Slow transient response

- Power management with low power PWM and high efficiency pre-regulator
 - Off-chip inductor (4.7 µH) for the pre-regulator

Software Controlled Power Management – Intel SpeedStep Technology

- Software controlled power management
 - Centralized hardware
- Voltage ramp rates are controlled
- Dynamically change frequency of PLLs by changing input voltage

Full On-Chip Power Management – 65 nm CMOS Cellular Handset Chip

- Buck converter with ten LDOs
 - ~ 0.9 mm²
- 85% power efficiency
- Centralized power management and power supplies
 - Far from load circuits
 - Higher power noise

Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
 - From power plant to integrated circuit
 - Power delivery architectures
 - Background and issues
 - Separation of power conversion and regulation
 - Heterogeneous power delivery management
 - Future research
 - Summary
Active Power Supplies – Circuit Examples

Power supply (noisy and high)

Linear

Power converter/regulator

Switched Capacitor (SC)

Power supply (stable and low)

Switching (SMPS)

LDO

Series-parallel

Buck
Switching vs. Linear Power Supplies

<table>
<thead>
<tr>
<th></th>
<th>SMPS / SC</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>• Medium for SC</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>• Large for SMPS</td>
<td>• Increasing with current load</td>
</tr>
<tr>
<td>Response time</td>
<td>Slow</td>
<td>Fast</td>
</tr>
<tr>
<td>Step-up/ step-down</td>
<td>Both</td>
<td>Step-down</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>Good</td>
<td>Limited to V_{OUT} / V_N</td>
</tr>
<tr>
<td></td>
<td>• Drops with on-chip integration</td>
<td>• $V_{OUT} - V_N$ should be minimized</td>
</tr>
<tr>
<td></td>
<td>• Drops with current load</td>
<td></td>
</tr>
<tr>
<td>Voltage regulation</td>
<td>• Good in SMPS</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>• Poor in SC</td>
<td></td>
</tr>
</tbody>
</table>
Off-Chip Power Delivery – Past

- Off-chip power converters
 - Parasitic effects
 - Resistive IR drop
 - Inductive L di/dt noise
 - High number of I/O pins
On-Chip Power Delivery – Present

- **On-chip power converters**
 - Parasitic effects eliminated
 - Smaller converters required
Active vs. Passive Power Supplies

<table>
<thead>
<tr>
<th></th>
<th>On-chip power converters and regulators</th>
<th>On-chip decoupling capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Greater area requirement</td>
<td>Smaller area requirement</td>
</tr>
<tr>
<td>Response time</td>
<td>Slower response</td>
<td>Faster response</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>Limited efficiency due to the active devices and parasitic impedances</td>
<td>Power loss only due to parasitic impedances</td>
</tr>
<tr>
<td>Maximum supplied current</td>
<td>High</td>
<td>Limited to the size of the capacitor. Decay and recharge rate of the capacitor should be considered</td>
</tr>
</tbody>
</table>

- Exploit distinctive properties of decoupling capacitors and power supplies
Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
 - From power plant to integrated circuit
 - Power delivery architectures
 - Background and issues
 - Separation of power conversion and regulation
- Heterogeneous power delivery management
- Future research
- Summary
Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
 - Heterogeneous power delivery management
 - Design complexity
 - Design solutions
- Future research
- Summary
On-chip power delivery is not one-dimensional

- Highly complicated power delivery system
 - Off-chip/in-package power converters
 - On-chip power regulators and decoupling capacitors

- Power noise analysis
 - Computationally complex
 - Significant memory requirement

Interactions of Power Supplies and Power Grid

Architectural interactions within off-chip and on-chip power supplies

LDO
Decap
Load

Physical interactions within on-chip power supplies and power grid

Off-chip power converters
I/O interface
Distributed on-chip LDOs
Voltage islands

Off-chip
On-chip

UNIVERSITY of ROCHESTER
Physical Design Complexity
Distribution of Regulators and Decaps with On-Chip Loads

- Several power distribution networks
- Hundreds of on-chip linear regulators
- Thousands of decoupling capacitors
- Billions of load circuits
Architectural Clustering of Power Supplies

- Tens of off-chip switching converters
- Hundreds of on-chip linear regulators
- Multiple power grids
- Billions of load circuits

Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
- Heterogeneous power delivery management
 - Design complexity
 - Design solutions
- Future research
- Summary
Delivering power to complex ICs is a fundamental bottleneck.

Models
- Closed-form expressions for effective power grid resistance

Algorithms
- Fast algorithms for power grid analysis

Com-design methodology
- Off-chip converters
- On-chip regulators
- Decoupling capacitors

Circuits
- Ultra-small point-of-load voltage regulator

Architecture
- Topologies for on-chip and off-chip co-design of power supplies

Considering
- Power efficiency
- High regulation (low noise)
- 3-D integration
Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
- Heterogeneous power delivery management
 - Design complexity
 - Design solutions
 - Circuits
 - Models
 - Algorithms
 - Architecture
- Future research
- Summary
Active Filter Based Converter

- Rochester, Eastman Kodak, and TSMC
- 110 nm CMOS technology
- Voltage reference is replaced with active filter
 - Simple design
 - Low quiescent current
- Ultra-small voltage regulator
 - 0.015 mm2 on-chip area
 - Suitable for on-chip distribution
- Fast response time

![Diagram showing an op-amp with active filter connected]
Active Filter Based Converter - Feedback

- Feedback within active filter structure
 - Fast transient response to changes in load
 - Similar to LDO
- Effective regulation of output voltage
 - Small changes in supply voltage
 - Sharp output load transients
Five different test circuits have been fabricated

- Three circuits with internal PWM module to provide input signal
- Two circuits with input signals supplied from off-chip signal generator
Performance Summary

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Buck</td>
<td>LDO</td>
<td>LDO</td>
<td>LDO</td>
<td>LDO</td>
<td>LDO</td>
<td>SC</td>
<td>SC</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Technology [nm]</td>
<td>80</td>
<td>500</td>
<td>90</td>
<td>350</td>
<td>350</td>
<td>90</td>
<td>45</td>
<td>32</td>
<td>110</td>
</tr>
<tr>
<td>Response time [ns]</td>
<td>87a</td>
<td>150,000</td>
<td>0.654b</td>
<td>270</td>
<td>300</td>
<td>3000-5000</td>
<td>120-1200</td>
<td>N/A</td>
<td>72-192</td>
</tr>
<tr>
<td>On-chip area [mm2]</td>
<td>12.6</td>
<td>1</td>
<td>0.098</td>
<td>0.264</td>
<td>0.045c</td>
<td>0.019</td>
<td>0.16</td>
<td>0.374</td>
<td>0.015</td>
</tr>
<tr>
<td>Output voltage [V]</td>
<td>0.9</td>
<td>2-3.6</td>
<td>0.9</td>
<td>1.8-3.5</td>
<td>1</td>
<td>0.5-1</td>
<td>0.8-1</td>
<td>0.66-1.33</td>
<td>0.9</td>
</tr>
<tr>
<td>Input voltage [V]</td>
<td>1.2</td>
<td>5</td>
<td>1.2</td>
<td>2-5.5</td>
<td>1.2</td>
<td>0.75-1.2</td>
<td>N/A</td>
<td>N/A</td>
<td>1.8</td>
</tr>
<tr>
<td>Maximum current [mA]</td>
<td>9500</td>
<td>300</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>100</td>
<td>8</td>
<td>205</td>
<td>89</td>
</tr>
<tr>
<td>Maximum current efficiency</td>
<td>N/A</td>
<td>99.8</td>
<td>94</td>
<td>99.8</td>
<td>99.8</td>
<td>99.9</td>
<td>N/A</td>
<td>N/A</td>
<td>99.5</td>
</tr>
<tr>
<td>ΔV_{out} [mV]</td>
<td>100</td>
<td>300</td>
<td>90</td>
<td>54</td>
<td>180</td>
<td>114</td>
<td>N/A</td>
<td>N/A</td>
<td>44</td>
</tr>
<tr>
<td>Quiescent current [mA]</td>
<td>N/A</td>
<td>10.750</td>
<td>6</td>
<td>0.02-0.34</td>
<td>0.095</td>
<td>0.008</td>
<td>N/A</td>
<td>N/A</td>
<td>0.38</td>
</tr>
<tr>
<td>Load regulation [mV/mA]</td>
<td>0.014a</td>
<td>0.5</td>
<td>1.8</td>
<td>0.27</td>
<td>0.28</td>
<td>0.1</td>
<td>N/A</td>
<td>N/A</td>
<td>0.67</td>
</tr>
<tr>
<td>Transition time [ns]</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1</td>
<td>100</td>
<td>–150</td>
<td>100</td>
<td>N/A</td>
<td>N/A</td>
<td>70</td>
</tr>
<tr>
<td>Transition time ratio (R)</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>1000</td>
<td>1500</td>
<td>1000</td>
<td>N/A</td>
<td>N/A</td>
<td>700</td>
</tr>
<tr>
<td>FOM1=$K\left(\frac{\Delta V{out}}{\Delta I_{out}}\right)^2 \cdot R \cdot A$</td>
<td>N/A</td>
<td>N/A</td>
<td>0.029b</td>
<td>6.544</td>
<td>6.926c</td>
<td>0.893</td>
<td>N/A</td>
<td>N/A</td>
<td>0.518</td>
</tr>
<tr>
<td>FOM2=$K\left(\frac{\Delta V{out}}{\Delta I_{out}}\right) \cdot \frac{R \cdot A}{T}$</td>
<td>N/A</td>
<td>N/A</td>
<td>3.6b</td>
<td>53.4</td>
<td>56.5c</td>
<td>110.2</td>
<td>N/A</td>
<td>N/A</td>
<td>42.8</td>
</tr>
</tbody>
</table>

aSimulation results (not experimental data).

bMathematical analysis (not experimental data).

cAn off-chip capacitor of 1 nF to 10 μF is required.

Proposed regulator provides smallest **area**, fast **response** time, and low **quiescent current**

Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
- Heterogeneous power delivery management
 - Design complexity
 - Design solutions
 - Circuits
 - Models
 - Algorithms
 - Architecture
- Future research
- Summary
Effective Resistance Model

- Infinite semi-uniform two layer mesh
- Models power or ground network
- Effective resistance between arbitrary points within power grid
- IR drop analysis

Exact solution

\[R_{x,y} = \frac{k r}{\pi} \int_{0}^{\pi} \frac{2 - e^{-|x|\alpha \cos \beta}}{\sinh \alpha} d\beta \]

Asymptotic solution

\[R_{x,y}/r = \frac{\sqrt{k}}{2\pi} [\ln(x^2 + ky^2) + 3.44388] \\
- 0.033425k - 0.0629k(k-1) \text{ for } k \to 1 \]

Physical separation affects current supplied from
- Power supplies
- Decoupling capacitors

\[i_{pl} = \left(R_{pl} + L_{pl} \frac{dV_c(t)}{dt} \right) - CR_{vd} \frac{dV_c(t)}{dt} - CL_{vd} \frac{d^2V_c(t)}{dt^2} \]

\[i_{dl} = \frac{R_{vd} + R_{dl} + (L_{vd} + R_{dl}) \frac{dV_c(t)}{dt}}{R_{vd} + R_{dl} + (L_{vd} + R_{dl})} \]
Flow of Presentation

- Power delivery yesterday, today and tomorrow
- Heterogeneous power delivery management
 - Design complexity
 - Design solutions
 - Circuits
 - Models
 - Algorithms
 - Architecture
- Future research
- Summary
Fast Algorithms for Power Grid Synthesis

- Efficient algorithms to estimate IR voltage drops
- Significantly faster than existing techniques
- Non-iterative

\[IR_{\text{node}} = \frac{1}{2} \sum_{i=1}^{m} \left[I_{\text{load}}(i) \cdot (R_{sn} + R_{sl} - R_{nl}) \right] - \frac{1}{2} \sum_{i=2}^{n} \left[I_{\text{supply}}(i) \cdot (R_{sn} + R_{sl} - R_{nl}) \right] \]

Where should power supplies and decoupling capacitors be placed?

Characteristics of decoupling capacitors and power supplies
- Spatial location
- Output impedance
 - Response time
- Maximum current

Characteristics of load circuits
- Spatial location
- Current demand

Characteristics of power network
- Parasitic impedances

- ISPD benchmark circuit
 - Superblue18
 - 483,452 individual blocks
- Power grid
 - ~ 400 horizontal lines
 - ~ 380 vertical lines

Benchmark Circuits – SuperBlue5

Map of voltage drops for superblue5

- Smaller voltage drop with distributed power delivery system

<table>
<thead>
<tr>
<th>Case</th>
<th># of PS</th>
<th># of Decaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Case 2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Case 3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Case 4</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Case 5</td>
<td>20</td>
<td>32</td>
</tr>
</tbody>
</table>

- # of blocks: 95,041
- Power grid size: 774 X 713
- # of nodes in the power grid: 551,862
Benchmark Circuits – SuperBlue10

Map of voltage drops for superblue10
 - Smaller voltage drop with distributed power delivery system

<table>
<thead>
<tr>
<th></th>
<th># of blocks</th>
<th>Power grid size</th>
<th># of nodes in the power grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Case 2</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Case 3</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Case 4</td>
<td>3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Case 5</td>
<td>20</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>
Map of voltage drops for superblue12

- Smaller voltage drop with distributed power delivery system
Maps of voltage drops for superblue18

- Smaller voltage drop with distributed power delivery system

<table>
<thead>
<tr>
<th># of blocks</th>
<th>Power grid size</th>
<th># of nodes in the power grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>41,047</td>
<td>381 X 404</td>
<td>153,924</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th># of PS</th>
<th># of Decaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>32</td>
</tr>
</tbody>
</table>
Distributed Power Delivery

<table>
<thead>
<tr>
<th></th>
<th>One power supply</th>
<th>One power supply</th>
<th>Three power supplies</th>
<th>Three power supplies</th>
<th>20 power supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two decaps</td>
<td>Ten decaps</td>
<td>Ten decaps</td>
<td>20 decaps</td>
<td>32 decaps</td>
</tr>
<tr>
<td>Maximum voltage drop</td>
<td>163 mV</td>
<td>130 mV</td>
<td>115 mV</td>
<td>73 mV</td>
<td>100 mV</td>
</tr>
<tr>
<td>Average voltage drop</td>
<td>134 mV</td>
<td>133 mV</td>
<td>106 mV</td>
<td>81 mV</td>
<td>98 mV</td>
</tr>
<tr>
<td>Maximum voltage drop</td>
<td>122 mV</td>
<td>106 mV</td>
<td>106 mV</td>
<td>81 mV</td>
<td>98 mV</td>
</tr>
<tr>
<td>Average voltage drop</td>
<td>73 mV</td>
<td>81 mV</td>
<td>81 mV</td>
<td>72 mV</td>
<td>72 mV</td>
</tr>
</tbody>
</table>

Maximum voltage drop decreases significantly with distributed power delivery.

Flow of Presentation

- Power delivery yesterday, today and tomorrow
- Heterogeneous power delivery management
 - Design complexity
 - Design solutions
 - Circuits
 - Models
 - Algorithms
 - Architecture
- Future research
- Summary
Objective

- Maximize power efficiency of system
- Satisfy on-chip area constraints

Design criteria

- Number of off-chip SMPS
- Number of POL LDOs
- Clusters of LDOs within SMPS
 - Choice of output voltage levels for SMPS converters

Off-Chip Factors in Heterogeneous Power System

Power Efficiency vs. Number of SMPS converters

- **Single off-chip SMPS**
 - 68% efficiency

- **Three off-chip SMPS**
 - 93% efficiency

![Diagram showing power loss and efficiency for single and three off-chip SMPS converters.](image)
Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
- Heterogeneous power delivery management
- Future research
- Summary
Delivering power to complex ICs is a fundamental bottleneck.

Summary

Models
- Closed-form expressions for effective power grid resistance

Algorithms
- Fast algorithms for power grid analysis

Circuits
- Ultra-small point-of-load voltage regulator

Co-design methodology
- Power delivery on-chip
 - Circuits
 - Models
 - Architecture
- Power supply distribution on-chip
 - Circuits
 - Models
 - Algorithms

Architecture
- Topologies for on-chip and off-chip co-design of power supplies
Power Management – Cross-Field Research

Optimization techniques
- Computational geometry
- Operations research

Interconnect evolution
- Interconnect complexity
- Bus signaling
- Network-on-chip paradigm
Flow of Presentation

- Power delivery: yesterday, today, and tomorrow
- Heterogeneous power delivery management
- Future research

Summary
Delivering power to complex ICs is a fundamental bottleneck.

- **Models**
 - Closed-form expressions for effective power grid resistance

- **Algorithms**
 - Fast algorithms for power grid analysis

- **Circuits**
 - Ultra-small point-of-load voltage regulator

- **Co-design methodology**
 - Off-chip converters
 - On-chip regulators
 - Decoupling capacitors

- **considering**
 - Power efficiency
 - High regulation (low noise)
 - 3-D integration

- **Architecture**
 - Topologies for on-chip and off-chip co-design of power supplies
Distributed On-Chip Power Regulators and Decoupling Capacitors

Eby G. Friedman

Department of Electrical and Computer Engineering
University of Rochester
Department of Electrical Engineering
Technion – Institute of Technology